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Data Networks in the Era of Big Data 
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Content 
1.  Process model 
2.  Data generation 
3.  Data analytics 

§  Reality mining 
§  Page rank 
§  Traffic data analysis 
§  Methods 

4.  Governance of complex systems 
§  Cases (Flu trends, traffic management, smart grids) 
§  Real-time governance 

5.  Political regulation of Big Data? 
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!1. Big-Data-Prozessmodell 

Datenanalysten

AuswertungAuswertungGenerierungGenerierung SteuerungSteuerung

Mensch

Big-data-Prozessmodell

Maschine

Mensch

Maschine

Institutioneller Rahmen

Sozio-kultureller Kontext

Chancen
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Risiken



| 2017 |               5 

!

!

!
!

!
!
!
!
!

DR.!WEYER!
C O N S U L T I N G !

!
2. Datengenerierung 

§  Ubiquitäre Datenerfassung 
§  durch smarte Geräte 
§  automatisiert 
§  3 V‘s, 3 R‘s, 13 P‘s ... 

§  Algorithmisierung des Sozialen 

§  Datentypen 
§  Nutzerdaten 
§  Metadaten 
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2. Selbstvermessung: Praktiken  

§  Gesundheitsmonitoring 
§  Gesunde 

§  Körper und Lebensführung optimieren  

§  Kranke 
§  preiswerte Alternative 
§  vereinfachte Protokollierung und Überwachung 

§  Motivation 
§  Sinnstiftung 
§  Optimierung 
§  Emanzipation 
§  neue Normen 
§  Gamification 
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2. Selbstvermessung: Risiken  

§  Konkurrenzkampf 
§  Gefährdung von 

§  persönlichem Wohlbefinden 
§  interpersonellen Beziehungen 

 
§  Normierung des Alltagslebens 

§  Fokus: Messbarkeit  
§  Objektivierungs-Suggestion 
§  Deskriptive Daten 

à normative Daten 
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2. Selbstvermessung: Legitimation  

§  Weitergabe an Dritte 
§  Peers 

§  reflektiert und intendiert 
§  intermediäre Instanz als Filter 

§  Datenanalysten 
§  unbemerkt (AGB‘s) 

§  Legitimationsstrategien 
§  schützenswerte vs. nicht schützenswerte Daten 
§  übermächtiges Gegenüber 
§  Tauschgeschäft 

§  Service gegen Daten / Daten gegen Vergleichswerte 
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Datenanalysten

AuswertungAuswertungGenerierungGenerierung SteuerungSteuerung

Mensch

Big-data-Prozessmodell

Maschine

Mensch

Maschine

Institutioneller Rahmen

Sozio-kultureller Kontext

Chancen
Risiken

Chancen
Risiken

Vertrauen 
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Content 
1.  Process model 
2.  Data generation 
3.  Data analytics 

§  Reality mining 
§  Page rank 
§  Traffic data analysis 
§  Methods 

4.  Governance of complex systems 
§  Cases (Flu trends, traffic management, smart grids) 
§  Real-time governance 

5.  Political regulation of Big Data? 
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3. Datenverarbeitung 

§  Massendaten 
§  aus Suchmaschinen, Social media etc. 
§  vollständige Samples (?) 
§  Probleme der Datenreliabilität 

§  Anwendungsfelder 
§  Marketing, Verkehr, Gesundheit etc. 

§  Data analytics 
§  Lagebilder (Makro) 
§  Trendprognosen (Makro) 
§  Mustererkennung    (à nächste Folie) 
§  individuelle Profile (Mikro) 
§  Anomalie-Erkennung (Mikro) 
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Eagle/Pentland (2006) 
Reality mining: sensing complex social systems 

§  Analysis of social behavior and social relations 
§  By means of tracing digital data 
§  Objectives 

§  Identify behavioral patterns 
§  Predict future actions 

§  100 students and staff from MIT 
§  Equipped with Nokia 6600 

§  9 months 
§  450.000 hours 

§  Location, usage, communication 
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Eagle/Pentland (cont.)  

computers. On average, the subjects in our study were
without mobile phone reception for 6% of the time.
When they did not have reception, however, they were
within the range of a static Bluetooth device or another
mobile phone 21% and 29% of their time, respectively.
We expect the coverage by Bluetooth devices to increase
dramatically in the near future as they become more
common in computers and electronic equipment.

If this trend continues, Bluetooth IDs may become as
important as cell tower mapping for estimation of user
location. Figure 3 shows the 10 most frequently detected
Bluetooth devices for one subject averaged for the
month of January. This figure not only provides insight
into the times the user is in his office (from the fre-
quencies of the ‘Desktop’), but, as mentioned in Sect. 4,
also into the type of relationship with other subjects. For
example, the figure suggests the user leaves his office
during the hour of 14:00 and becomes increasingly

proximate to Subject 4. Judging from the strong cutoffs
at 9:00 and 17:00, it is clear that this subject had very
regular hours during the month, and thus has fairly
predictable high-level behavior. This ‘‘low entropy’’
behavior is also depicted in Fig. 4.

3.2 Models to identify location and activity

Human life is inherently imbued with routine across all
temporal scales, from minute-to-minute actions to
monthly or yearly patterns. Many of these patterns in
behavior are easy to recognize, however some are more
subtle. We attempt to quantify the amount of predictable
structure in an individual’s life using an information en-
tropy metric. In information theory, the amount of ran-
domness in a signal corresponds to its entropy, as defined
in 1938 by Claude Shannon in the equation below.

Fig. 3 The top 10 Bluetooth devices encountered for Subject 9
during the month of January. The subject is only regularly
proximate to other Bluetooth devices between 9:00 and 17:00,
while at work—but never at any other times. This predictable

behavior will be defined in Chap. 4 as ‘low entropy.’ The subject’s
desktop computer is logged most frequently throughout the day,
with the exception of the hour between 14:00 and 15:00. During
this time window, Subject 9 is most often proximate to Subject 4

Fig. 2 Cell tower probability density functions. The probability of
being associated with one of the 25 visible cell towers is plotted
above for five users who work on the third floor corner of the same
office building. Each tower is listed on the x-axis and the
probability of the phone logging it while the user is in his office
is shown on the y-axis. (Range was assured to 10 m by the presence

of a static Bluetooth device.) It can be seen that each user ‘sees’ a
different distribution of cell towers depending on the location of his
office, with the exception of Users 4 and 5, who are officemates and
have the same distribution despite being in the office at different
times

258
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Eagle/Pentland (cont.) 

low entropy 

       high entropy 

HðxÞ ¼ $
Xn

i¼1
pðiÞ log2 pðiÞ:

For a more concrete example, consider the problem of
image compression (such as the jpeg standard) of an
overhead photo taken of just an empty checkerboard.
This image (in theory) can be significantly compressed
because it does not contain much ‘information’. Essen-
tially the entire image could be recreated with the same,
simple pattern. However, if the picture was taken during
the middle of a match, the pieces on the board introduce
more randomness into the image and therefore it will
prove to be a larger file because it contains more infor-
mation, or entropy.

Similarly, people who live entropic lives tend to be
more variable and harder to predict, while low-entropy
lives are characterized by strong patterns across all time
scales. Figure 4 depicts the patterns in cell tower tran-
sitions and the total number of Bluetooth devices
encountered at each hour during the month of January
for Subject 9, a ‘low-entropy’ subject.

It is clear that the subject is typically at home during
the evening and all night until 8:00, when he commutes
in to work, and then stays at work until 17:00 when he
returns home. We can see that almost all of the Blue-
tooth devices are detected during these regular office
hours, Monday through Friday. This is certainly not the
case for many of the subjects. Figure 5 displays a dif-
ferent set of behaviors for Subject 8. The subject has
much less regular patterns of location and in the eve-
nings has other mobile devices in close proximity. We
will use contextualized information about proximity
with other mobile devices to infer relationships, de-
scribed in Sect. 4.

While calculating a life’s entropy be used as a
method of self-reflection on the routines (or ruts) in
one’s life, it can also be used to compare the behaviors
of different demographics. Figure 6 shows the average
weekly entropy of each of the demographics in our
study, based on their location {work, home, no signal,
elsewhere} each hour. Average weekly entropy was
calculated by drawing 100 samples of a 7-day period

Fig. 4 A ‘low-entropy’ (H = 30.9) subject’s daily distribution of
home/work transitions and Bluetooth devices encounters during
the month of January. The top figure shows the most likely location
of the subject: ‘‘Work, Home, Elsewhere, and No Signal.’’ While

the subject’s state sporadically jumps to ‘‘No Signal,’’ the other
states occur with very regular frequency. This is confirmed by the
Bluetooth encounters plotted below representing the structured
working schedule of the ‘low-entropy’ subject

Fig. 5 A ‘high entropy’
(H = 48.5) subject’s daily
distribution of home/work
transitions and Bluetooth
device encounters during the
month of January. In contrast
to Fig. 4, the lack of readily
apparently routine and
structure makes this subject’s
behavior harder to model and
predict

259
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Eagle/Pentland (cont.) 

for each subject in the study. No surprise to most, the
Media Lab first-year undergraduates are the most
entropic of the group. The freshmen do not come into
the lab on a regular basis and have seemingly random
behavior with HðxÞ ¼ 47:3 (the entropy of a sequence
of 168 random numbers is approximately 60). The
graduate students (Media Lab incoming, Media Lab
senior, and Sloan incoming) are the next most entropic
with HðxÞ ¼ 44.5, 42.8, 37.6f g respectively. Finally,
the Media Lab faculty and staff have most rigidity in
their schedules, reflected in their relatively low-average
entropy measures, HðxÞ ¼ 31.8, 29.1f g:

One similarity between the different demographics
shown above is the clear role time plays in determining
user behavior. To account for this, we have developed a
simple Hidden Markov Model, shown in Fig. 7, con-
ditioned on both the hour of day T 1 2 1; 2; 3:::; 24f g

! "

as well as on weekday or weekend T 2 2 1; 2f g
! "

: Ini-
tially observations in the model are simply the distri-

bution of cell towers Y 1 2 CT1;CT1; :::;CTn1f g
! "

and
Bluetooth devices Y 2 2 BT1;BT1; :::;BTn2f g

! "
: A

straightforward Expectation-Maximization inference
engine was used to learn the parameters in the transi-
tion model, P QtjQt$1ð Þ; and the observation model
P YtjQtð Þ; and performed clustering in which we defined
the dimensionality of the state space. The hidden state
is represented in terms of a single discrete random
variable corresponding to three different situations,
Q 2 home; work; otherf g: After training our model
with one month of data from several subjects we were
able to provide a good separation of clusters, typically
with greater than 95% accuracy. Examination of the
data shows that non-linear techniques will be required
to obtain significantly higher accuracy. However, for
the purposes of this chapter, this accuracy has proven
sufficient. In future work we hope to leverage the
information within LifeNet [23] to create more specific
inferences about activity.

Fig. 6 Entropy, H(x), was
calculated from the {work,
home, no signal, elsewhere} set
of behaviors for 100 samples of
a 7-day period. The Media Lab
freshmen have the least
predictable schedules, which
makes sense because they come
to the lab much less regular
basis. The staff and faculty have
the most least entropic
schedules, typically adhering to
a consistent work routine

Fig. 7 A Hidden Markov
Model conditioned on time for
situation identification. The
model was designed to be able
to incorporate many additional
observation vectors such as
friends nearby, traveling,
sleeping and talking on the
phone

260
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Eagle/Pentland (cont.) 

the structure of the underlying friendship network as
shown in Fig. 11. The clique on the top right of each
network are the Sloan business students while the Media
Lab senior students are at the center of the clique on the
bottom left. The first year Media Lab students can be
found on the periphery of both graphs.

We have trained a Gaussian mixture model [8] to
detect patterns in proximity between users and correlate
them with the type of relationship. The labels for this
model came from a survey taken by all the experimental
subjects at the end of two months of data collection. The
survey asked who they spent time with, both in the
workplace and out of the workplace, and who they
would consider to be within their circle of friends. We
compared these labels with estimated location (using cell
tower distribution and static Bluetooth device distribu-
tion), proximity (measured from Bluetooth logs), and
time of day.

Workplace colleagues, outside friends, and people
within a user’s circle of friends were identified with over
90% accuracy, calculated over the 2,000 potential dyads.
Initial examination of the errors indicates that the
inclusion of communication logs combined with a more

powerful modeling technique, such as Support Vector
Machine, will have considerably greater accuracy.

Some of the information that permits inference of
friendship is illustrated in Fig. 12 and Table 1. This
figure shows that our sensing technique is picking up the
common-sense phenomenon that office acquaintances
are frequently seen in the workplace, but rarely outside
the workplace. Conversely, friends are often seen outside
of the workplace, even if they are co-workers. Deter-
mining membership in the ‘circle of friends’ requires
cross-referencing between friends: is this person a
member of a cluster in the out-of-office proximity data?

4.3 Proximity networks of work groups

By continuously logging the people proximate to an
individual, we are able to quantify a variety of properties
about the individual’s work group. Although most work
in networks assumes a static topology, proximity net-
work data is extremely dynamic and sparse. We are
currently building generative models to attempt to
parameterize the underlying dynamics of these networks

Fig. 11 Friendship (left) and daily proximity (right) networks.
Circles represent incoming Sloan business school students. Trian-
gles, diamonds and squares represent senior students, incoming
students, and faculty/staff/freshman at the Media Lab. While the

two networks share similar structure, inferring friendship from
proximity requires the additional information about the context
(location and time) of the proximity

Fig. 12 Proximity frequency
data for a friend and a
workplace acquaintance. The
top two plots are the times (time
of day and day of the week,
respectively) when this
particular subject encounters
another subject he has labeled
as a ‘‘friend.’’ Similarly, the
subsequent two plots show the
same information for another
individual the subject has
labeled as ‘‘office
acquaintance.’’ It is clear that
while the office acquaintance is
encountered more often, the
distribution is constrained to
weekdays during typical
working hours. In contrast, the
subject encounters his friend
during the workday, but also in
the evening and on weekends

264

= Media Lab Freshman und Mitarbeiter 

= Media Lab Neue Masterstudenten  

= Media Lab Senior Masterstudenten 

= Sloan business school Studenten  

friendship (left) and proximity networks (right) 
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3. Page rank (Google) 

§  See NetLogo 
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18 Frank Rieger (Chaos Computer Club), 
Gutachten für BVerfG, in FAZ 20.02.2010 

Verkehrsdatenanalyse 



| 2017 |               19 

!

!

!
!

!
!
!
!
!

DR.!WEYER!
C O N S U L T I N G !

!
3. Datenverarbeitung 

§  Massendaten 
§  aus Suchmaschinen, Social media etc. 
§  vollständige Samples (?) 
§  Probleme der Datenreliabilität 

§  Anwendungsfelder 
§  Marketing, Verkehr, Gesundheit etc. 

§  Data analytics 
§  Lagebilder (Makro) 
§  Trendprognosen (Makro) 
§  Mustererkennung     
§  individuelle Profile (Mikro) 
§  Anomalie-Erkennung (Mikro) 
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3. Datenverarbeitung: Methoden 

§  traditionelle Verfahren 
§  Statistik 
§  Netzwerkanalyse 
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3. Datenverarbeitung: Methoden 

§  traditionelle Verfahren 
§  Statistik 
§  Netzwerkanalyse 
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3. Datenverarbeitung: Methoden 

§  traditionelle Verfahren 
§  Statistik 
§  Netzwerkanalyse 
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3. Datenverarbeitung: Methoden 

§  traditionelle Verfahren 
§  Statistik 
§  Netzwerkanalyse 

§  neuartige Methoden 
§  data mining, reality mining usw. 
§  machine learning, statistical relational learning 

§  Datenverarbeitung in Echtzeit 

§  Algokratie 
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3. Datenverarbeitung: Soziologie 

§  Soziologie und Big Data 
§  Internet-Soziologie 
§  nicht-responsive Verhaltensdaten 
§  Massen-Experimente 

§  Computational social science 
§  text mining 
§  ... 
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Content 
1.  Process model 
2.  Data generation 
3.  Data analytics 

§  Reality mining 
§  Page rank 
§  Traffic data analysis 
§  Methods 

4.  Governance of complex systems 
§  Cases (Flu trends, traffic management, smart grids) 
§  Real-time governance 

5.  Political regulation of Big Data? 
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4. Steuerung komplexer Systeme 

§  Steuerung individuellen Verhaltens 
§  Echtzeitsteuerung komplexer Systeme 

§  Prognosen 
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Quellen: www.google.org/flutrends/about/how.html, Ginsberg 2009 

§  Fehlprognosen 
§  Replizierbarkeit 
§  Änderungen des Algorithmus 
§  Verzerrung 
§  traditionelle Statistik 
(Lazar 2014) 

4. Steuerung komplexer Systeme 

Google Flu Trends 
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4. Steuerung komplexer Systeme 

§  Steuerung individuellen Verhaltens 
§  Echtzeitsteuerung komplexer Systeme 

§  Prognosen 
§  intelligente Netze (Verkehr, smart grid) 

§  Predictive policing 
§  Macht im Netz 
§  Politische Regulierung 
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Praxisbeispiel: TomTom HD traffic 
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Echtzeit-Steuerung komplexer Systeme 
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Car2Car Communication 
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Smart grid 
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Content 
1.  Process model 
2.  Data generation 
3.  Data analytics 

§  Reality mining 
§  Page rank 
§  Traffic data analysis 
§  Methods 

4.  Governance of complex systems 
§  Cases (Flu trends, traffic management, smart grids) 
§  Real-time governance 

5.  Political regulation of Big Data? 
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Exkurs 

§  Grenzen traditioneller Governance 
§  hierarchische Steuerung (top-down) 

§  dysfunktionale Effekte; Ziele nicht erreicht 
§  dezentrale Koordination (bottom-up) 

§  ungesteuerte Selbstorganisation riskant 

§  Suche nach neuen Formen intelligenter Steuerung 
§  Widerspruch? 
§  Verknüpfung von Unvereinbarem? 

§  Steuerung UND Selbstorganisation? 
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Schwarmintelligenz in natürlichen Systemen 

§  erstaunliche Leistungsfähigkeit 
§  dezentrale, lokale Koordination 
§  einfache Regeln; kein „leader“ 
§  Beispiele 

§  Vogelschwarm 
§  Fischschwarm 

§  Anwendungen in 
§  Robotik 
§  VKI/MAS-Forschung 
§  Logistik u.a.m. 
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Schwarmintelligenz in sozialen Systemen 

§  Surowiecki (2005) 
§  hohe Intelligenz von Gruppen 

§  Open Innovation, Crowdsourcing 
§  InnoCentive 
§  Tchibo ideas 
§  Page Rank (Google) 

§  natürliche versus soziale Systeme 
§  Ameisen: trieb-/instinktgesteuert 
§  Menschen: subjektiv rationale Alternativ-Entscheidungen 
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Grenzen der kollektiven Intelligenz 

§  Surowiecki (2005) 
§  Aggregationsmechanismus nötig 
§  Selbstorganisation funktioniert nicht von allein 

§  Was ist, wenn der Schwarm in die falsche Richtung fliegt? 
§  Beispiel Love Parade 
§  Beispiel Finanzmärkte 
§  Sind Verkehrsstaus intelligent? 

(Apropos: Wer weiß, was die richtige Richtung ist?) 
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Notwendigkeit von Steuerung ... 

ergibt sich aus ... 
1.  nicht-intendierten Effekten „ungezügelter“ Selbstorganisation 

§  vgl. Willke, Beck, Loorbach u.a.m. 

2.  politisch konsentierten Zielen 
§  per Selbstorganisation schwer erreichbar 
§  Versagen interventionistischer Steuerung 
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Die Praxis der Steuerung verteilter Systeme 

§  dumme Netze 
§  produzieren Datenmüll, Blackouts etc. 

§  intelligente Netze 
§  bewältigen Probleme der Koordination und Aggregation 

§  „Working in practise, but not in theory“ 
§  Soziologie hat bislang keine Theorie verteilter Systeme. 
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Verkehrstelematik 

§  Echtzeit-Kommunikation 
§  bi-direktional 
§  Fahrzeuge sind „Knoten im Netz“ 

§  Echtzeit-Steuerung 
§  dezentral generierte Daten 
§  zentral hinterlegte Algorithmen 
§  dezentrale Entscheidungen 

§  Adaptive Steuerung 
§  Anpassung des Systems 
§  Anpassung der Akteure 
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Echtzeit-Steuerung komplexer Systeme 

§  dezentrale Strukturen UND zentrale Steuerung 
§  New („mixed“) mode of governance 

§  Planung UND Selbstorganisation 
§  „Ad-hoc-Planung“ (situatives Handeln) 
§  Konsequenzen für Handlungsfähigkeit der Akteure? 

§  hochgradig automatisiert 
§  zeitlich verdichtet 

§  simultan statt sequenziell 
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Paradigm-shift(s) in management (Rochlin 1998) 

1.  hierarchical, centralized control; ratinal planning (1950s/60s) 
§  assembly line 

2.  dezentralized, flexible, participatory self-organization (1970/80s) 
§   personal computer 

3.  central control of dezentralized structures (micro-management) 
§   Internet 
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„Computer trap“ (Rochlin 1998) 

§  unintended consequences of computerization 
§  striving for improvement of efficiency 
§  Losses of autonomy and slack 
§  of learning capacities 

§  growing dependency, increasing vulnerability of society 
§  transformation of society 

§  deconstruction of social institutions 
§  irreversal process 

§  (large-scale) experiments 
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4. Governance of complex systems 

§  Governance by algorithms? (Saurwein et al. 2015) 
§  O‘Reilly 2013 
§  Lessig 2000, 2006: Code is law 

§  Governance of algorithms? (Just et al. 2016) 
§  Smart regulation 
§  Role of the state? 
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Content 
1.  Process model 
2.  Data generation 
3.  Data analytics 

§  Reality mining 
§  Page rank 
§  Traffic data analysis 
§  Methods 

4.  Governance of complex systems 
§  Cases (Flu trends, traffic management, smart grids) 
§  Real-time governance 

5.  Political regulation of Big Data? 
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Institutioneller Rahmen 

Unternehmen 

Individuum 

Beispiele 
§  SEC-Mechanismus 
§  CO2-Regulierung 
§  Datenschutz 

 5. Institutionelle Regulierung 
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Kurs der Google-Aktie bricht dramatisch ein. (FAZ 14.03.2018) 

Nach dem Datenskandal 
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So wenig Organspenden wie noch nie. (statista.de) 

Nach dem Organskandal 
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!Internetwirtschaft und Netzpolitik 

Ausspähung 

Politik 

Verbraucher dotcoms 

Daten 

Regulierung 

Vertrauen 


